Research And Grants
Children’s Hospital of Philadelphia – $100,000
Dr. Jessica Foster
$100,000.00
December 2024
Translational
DIPG/DMG
Cytokine Signaling in Diffuse Midline Glioma to Enhance GD2-Directed CAR T Cell Trafficking
Diffuse midline glioma (DMG) is a devastating brain and spinal cord tumor that occurs in children and is universally fatal, killing most patients within one year. New approaches using the body’s immune system to attack DMG have started to show promise for patients. Chimeric antigen receptor or “CAR” T cells are an immune based cancer treatment that involves taking white blood cells from a patient, reprogramming them to seek out and attack tumor cells, then reintroducing these cells back into the patient where they destroy the cancer. One type of CAR T cell seeks out a target called GD2, a sugar molecule that sits on the outside of DMG tumor cells. Using GD2-seeking CAR T cells in mouse models, we observed that they work best when the first dose is given directly into the tumor, followed by doses into the fluid that coats the brain and spinal cord. The CAR T cells in the tumor seem to be sending a signal to the subsequent CAR T cells in the fluid, recruiting them to come fight the tumor as well. The goal of this proposal is to better understand the immune signals coming from DMG tumors and active T cells to help design the best CAR T cell trial for patients.
First, we will evaluate the blood and cerebral spinal fluid from 10 patients with DMG specifically looking at proteins related to the immune system. We will then use patient tumor cells and CAR T cells in the lab to identify what immune proteins are released when CAR T cells encounter and kill DMG tumor cells. Thus, this proposal aims to understand the baseline immune system of DMG patients, and how the signals from the immune system change after tumor cells encounter CAR T cells. Our goal is to create optimal dosing strategies of GD2-seeking CAR T cells and design better CAR T cells for clinical trials to help cure these awful tumors in children.